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Phenotypic plasticity is traditionally defined as the capacity of a given genotype to render alternative phenotypes
under different environmental conditions. Some studies focus on the individual genotype to study ‘true’ phenotypic
plasticity, regardless of the level of ecological organization involved in each particular study. We argue that,
depending on the research question and the scale, there are advantages of looking beyond the genetic identity of
each individual phenotype when addressing phenotypic plasticity. This broad approach may simplify experimental
designs, increase their statistical power, and allow a more inclusive estimation of the extent of phenotypic plasticity
in natural populations. We also posit that when the focus is on the ecological significance of a given phenotype, the
final ontogenetic stage and size of the experimental individuals whose plastic responses are compared should not
be necessarily considered as confounding factors. A broad approach to the genotypic basis of phenotypic responses,
focusing on the representativeness of the genotypic sample, together with the recognition that any
environmentally-induced phenotypic change is legitimate plasticity (and potential target of natural selection), may
contribute to the understanding of the ecological significance of phenotypic plasticity. © 2011 The Linnean Society
of London, Biological Journal of the Linnean Society, 2012, 105, 1–7.
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ADDRESSING PHENOTYPIC PLASTICITY

Phenotypic plasticity, broadly understood as
environmentally-induced phenotypic variation
(Stearns, 1989), is found in natural populations of a
diverse array of organisms and is a major means of
adaptation to environmental heterogeneity (Brad-
shaw & Hardwick, 1989). Paradoxically, being an
ecological phenomenon of paramount importance in
the wild (Miner et al., 2005; Nussey, Wilson &
Brommer, 2007), phenotypic plasticity can hardly be
observed in nature. Thus, aside from particular cases
where within-individual variation is studied (Cook &

Johnson, 1968), an experimental approach is needed
to ascribe observed phenotypic variation in the field to
phenotypic plasticity rather than to genetic variation.
It is widely known that individuals are capable of
modifying their phenotypes in response to changes in
the environment, and that these plastic responses
may entail fitness benefits (i.e. adaptive phenotypic
plasticity; Pigliucci, 2001) and can have significant
effects at different levels of ecological organization
(Miner et al., 2005). Furthermore, it is clear that
phenotypic plasticity itself may evolve independently
of the main value of the character (Schlichting &
Levin, 1986; Scheiner, 1993). The notion of phenotypic
plasticity, however, remains somewhat elusive, with
controversy existing regarding the way that it should*Corresponding author. E-mail: egianoli@userena.cl
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be measured and uncertainty about its role in adap-
tation in the context of a changing world (Valladares
& Gianoli, 2007; Valladares, Sánchez-Gómez &
Zavala, 2006; Valladares, Gianoli & Gómez, 2007;
Hulme, 2008; Visser, 2008; Matesanz, Gianoli & Val-
ladares, 2010; Nicotra et al., 2010).

Distinguished scholars in the field of phenotypic
plasticity have acknowledged that the reaction norm
(i.e. the repertoire of phenotypic responses of a given
genotype along an environmental gradient) is ulti-
mately a property of individuals (Stearns, 1989;
Agrawal, 2001; Schlichting & Smith, 2002; West-
Eberhard, 2003). Although we need to replicate ‘indi-
viduals’ along an environmental gradient to
rigorously assess phenotypic plasticity, the foremost
notion is that, by doing so, we are mimicking what
occurs when a single individual in nature experiences
an environmental change. We argue here that looking
beyond the genetic identity of each individual pheno-
type when addressing phenotypic plasticity in com-
parative studies not only simplifies experimental
designs and increases their statistical power, but also
may allow a more inclusive estimation of the extent of
phenotypic plasticity in natural populations. In the
same vein, we posit that when the focus is on the
ecological significance of a given phenotype, the final
ontogenetic stage and size of the experimental indi-
viduals whose plastic responses are compared should
not be considered confounding factors. We will explain
why a less strict consideration of all of these factors is
a practical necessity in some systems where it is
difficult to obtain sets of genetically and developmen-
tally identical individuals, and also a way to better
account for genotypic diversity within populations or
species for a given sampling effort.

GENOTYPE ¥ ENVIRONMENT
INTERACTIONS

Phenotypic plasticity is traditionally defined as the
capacity of a given genotype (G) to render alternative
phenotypes under different environmental conditions
(E). Some views emphasize the focus on the indi-
vidual genotype to study ‘true’ phenotypic plasticity,
regardless of the level of ecological organization
involved in each particular study or research ques-
tion. Thus, it has been stated that, for phenotypic
plasticity to be adequately addressed, it should be
studied with replicated genotypes, i.e., with experi-
ments using the very same genotype (clones) or indi-
viduals with known genetic relatedness (genetic
families) (Såstad, Pedersen & Digre, 1999; Richards
et al., 2006; Rohde & Junttila, 2008; Herrera, 2009;
J. M. Gómez, person. comm.). This approach would
limit the evaluation of a ubiquitous phenomenon of

paramount importance in nature to only those species
either with asexual reproduction, suitable to be
cloned or easily manipulated in breeding crosses.
When this methodological requirement is relaxed,
populations and species can be used as experimental
subjects of research on phenotypic plasticity (Valla-
dares et al., 2006). In this regard, Pigliucci (2001: 74)
states that ‘there is nothing wrong with considering
mean plasticities as an attribute of a population or
species’.

In ecological studies of phenotypic plasticity, the
main question is seldom whether plasticity occurs in
the study system or not; it is hard to find cases of no
plasticity at all. Rather, research questions often
address whether the study units show differences in
plasticity. When the study units are different geno-
types within a population it refers to the occurrence of
G ¥ E interactions. When those research questions
are addressed at higher levels of biological organiza-
tion (e.g. populations within a species, species within
a genus), a thorough field sampling followed by
random sorting of individuals into experimental
treatments should allow to estimate whether the
G ¥ E interaction analogues are significant, i.e.,
whether populations (P ¥ E interactions) or species
(S ¥ E interactions) differ in phenotypic plasticity.
This entails the reasonable assumption that genetic
relatedness is significantly greater within the experi-
mental units than among them. In accordance with
such a protocol, Gianoli & González-Teuber (2005),
Balaguer et al. (2001) and Lind & Johansson (2007)
tested for the relationship between phenotypic plas-
ticity and environmental heterogeneity in populations
of a perennial herb, an evergreen tree, and a frog,
respectively. Similarly, ecological hypotheses on the
expression of phenotypic plasticity have been tested
comparing the plastic responses of related species of
plants (Schlichting & Levin, 1984; Valladares et al.,
2000) and animals (Rezende et al., 2001; Deere &
Chown, 2006). The within-population approach
usually addresses the occurrence of genetic variation
for phenotypic plasticity among different clones or
genetic families, which is reflected in nonparallelism
among reaction norms (Pigliucci, 2005). Examples of
these G ¥ E interactions are found in the ecophysi-
ological responses to light availability displayed by
widespread annual plants (Sultan & Bazzaz, 1993;
Godoy et al., 2011), and in the life-history changes
induced by food type exhibited by freshwater crusta-
ceans (Ebert, Yampolsky & Van Noordwijk, 1993;
Yampolsky & Scheiner, 1994).

A sensu lato approach to the genotypic identity in
plasticity studies (i.e. related but not identical geno-
types being exposed to different environments) has
been applied a number of times (Smith & Palmer,
1994; Zhang & Lechowicz, 1994; Schlichting &
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Pigliucci, 1995; Valladares et al., 2002; Gianoli, 2003;
Saldaña, Gianoli & Lusk, 2005; Iwami, Kishida &
Nishimura, 2007; Cavieres & Sabat, 2008; González-
Teuber, Segovia & Gianoli, 2008; Visser, Holleman &
Caro, 2009). However, it is still a controversial issue.
Thus, the sensu lato approach has been criticized for
relaxing the requirement of genotypic uniformity in
common garden measurements of conspecific indi-
viduals, of unknown genetic relatedness, from the
same population (Herrera, 2009: 121–122). The tra-
ditional, sensu stricto approach to the study of phe-
notypic plasticity is strongly recommended: (1) when
research is aimed at the genetic basis of phenotypic
plasticity, thus evaluating whether reaction norms
differ among genotypes (Windig, 1994; Pigliucci, 1997;
Scheiner & Yampolsky, 1998) and hence there is
potential for an evolutionary response provided that
such reaction norms are related to fitness (Scheiner,
1993) or (2) when it is of interest to unravel the
precise mechanisms involved in the plastic responses
(Ballaré et al., 1995; Brakefield et al., 1996; Fairbairn
& Yadlowski, 1997; Kalujnaia et al., 2007). In other
words, this approach must be used when dealing with
phenotypic plasticity questions at the individual or
within-population level (Pigliucci, 2005). When posing
ecological or comparative questions in phenotypic
plasticity studies framed at higher levels of biological
organization, a broad approach might be useful, as is
discussed below.

Ecologically meaningful evaluations of phenotypic
plasticity must include environmental gradients that
are representative of those experienced by the subject
organisms in nature (Dudley, 2004; Miner et al., 2005;
Hulme, 2008). Otherwise, an incomplete view of the
relevant portions of the reaction norm would be
obtained. We further suggest that advances in the
understanding of the ecological significance of pheno-
typic plasticity in nature can be achieved if represen-
tative samples of the genotypic diversity of natural
populations are included in the study. For logistic
reasons, this representative sampling is hardly pos-
sible if researchers are to work with replicated geno-
types only. For example, consider a case where it is of
interest to compare the phenotypic plasticity to
resource availability in populations of a given species
that are distributed in contrasting habitats. Green-
house (or laboratory) space sets a limit for the
number of individuals that can be grown, manipu-
lated and measured. If only replicated genotypes
(either clones or genetic families) across the environ-
mental gradient are included as experimental sub-
jects, then only a relatively small number of original
genotypes would be sampled in the field or taken as
parental material. Alternatively, a bulk sampling of
propagules from several, widely-spaced parents,
which are later sorted into experimental treatments,

will allow the inclusion of a much more representa-
tive sample of genotypes from each population and
hence would increase ecological realism of the results.
Indeed, for a fixed number of experimental individu-
als under a given experimental design, the number of
genotypes sampled in each population with a sensu
lato approach will be N times greater than that
obtained following a sensu stricto approach, where N
is the number of replicates per genotype in the latter
approach. Importantly, to avoid pseudoreplication
bias, such a bulk sampling must be as extensive as
possible, with only one or a few propagules (seeds,
eggs) per parental individual.

ARE ONTOGENY AND ALLOMETRY
CONFOUNDING FACTORS?

Ontogeny and allometry are considered potentially
confounding factors in phenotypic plasticity research
(Gedroc, McConnaughay & Coleman, 1996; McCon-
naughay & Coleman, 1999; Weiner, 2004). First, most
organisms change their biomass allocation patterns
during ontogeny (Roff, 1992). These changes charac-
terize the life-history strategy of species or popula-
tions and are most likely shaped by natural selection
(Roff, 1992). Second, biomass allocation patterns often
follow allometric trajectories, thus being a function
of individual size (Weiner, 2004). Consequently, any
environmental factor that influences development
and growth rates, and hence the ontogenetic stage
and size of individuals at a given time, would also
affect the observed allocation patterns (Weiner, 2004).
Because plasticity is frequently measured in alloca-
tion traits, this rationale has often led to consider
these cases as ‘apparent plasticity’ as opposed to ‘true
plasticity’ (Weiner, 2004; Geng et al., 2007; Hulme,
2008). This point is illustrated by studies on plant
phenotypic plasticity showing that a conventional
analysis rendered the expected (from an adaptive
plasticity viewpoint) increase in root/shoot biomass
ratio in response to low nutrients (Gedroc et al., 1996)
and below-ground competition (Cahill, 2003), whereas
an allometric analysis (where plant size is accounted
for) showed otherwise. Nonetheless, other studies
have reported that root/shoot biomass allocation is
independent of plant size and support adaptive plas-
ticity prediction (Shipley & Meziane, 2002; Huang
et al., 2010). Moreover, the physiological mechanism
by which water shortage results in an increase in
the root/shoot ratio, another functional response that
could be considered as a mere byproduct of a shift
in ontogenetic trajectories, has been elucidated
(Lambers, Chapin & Pons, 1998). Most studies show
mixed results, lending partial support to both optimal
partitioning theory and ontogenetic/allometric control
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(Gedroc et al., 1996; McConnaughay & Coleman,
1999; Geng et al., 2007).

We assert that, with regard to phenotypic plasticity,
the essential fact for a species’ ecology is the expres-
sion of a given phenotype at a given point in space
and time. Whether such plastic responses are a con-
sequence of environmentally-driven changes in size/
ontogeny or reflect active plasticity mechanisms does
not affect the ultimate, functional implication: the
individual fitness. Natural selection acts on traits via
individuals, which show differential survival and/or
reproduction associated with the expression of certain
phenotypic characteristics (Endler, 1986), regard-
less of the underlying mechanisms. Thus, plastic
responses are to be ecologically significant because of
the advantages conferred to the organisms displaying
them in a changing environment (González-Teuber &
Gianoli, 2008) and not because of their dependence or
independence on individual size. The latter criterion
coincides with the definition of adaptation proposed
by Reeve & Sherman (1993), which refers to a phe-
notypic variant that results in the highest fitness
among other variants in a given environment, making
no reference to the historical processes, evolutionary
mechanisms or genotypic architecture behind the suc-
cessful phenotype. Summarizing, we think that a
consideration of the ecological context of the pheno-
typic change and its selective implications may lead
us to disregard the potentially confounding effects of
ontogeny and allometry, particularly when the plas-
ticity research does not aim at proximate causes.

Importantly, by stressing that the ecological signifi-
cance or adaptive value of phenotypic plasticity can
be evaluated without reference to the underlying
mechanisms, we do not imply that any phenotypic
change observed under different environments is to
be considered adaptive (Ghalambor et al., 2007). To
properly infer that a given phenotypic response may
be an adaptive feature selected in the relevant eco-
logical scenario, and not a byproduct of another
process, it is essential to identify a functional link
(supported by ecophysiological knowledge) between
the observed phenotypic change and the challenging
environment (Sultan, 1995; Kingsolver & Huey,
1998). Dudley (2004) discusses how the same phe-
nomenon, plant tissue necrosis, may be interpreted
both as a passive symptom of damage, when plants
are subjected to nickel deficiency, and as an active
adaptive response, when it is associated with a patho-
gen infection that elicits a hypersensitive response
surrounding the pathogen with dead tissue. Similarly,
we think that when the consequences of environmen-
tal challenges on the organisms are known (e.g.
drought may cause plant wilting) and the positive
effects of the ensuing responses are identified (e.g.
increased root/shoot biomass allocation in response to

reduced soil moisture enhances water uptake), there
is no reason to consider this phenomenon as ‘apparent
plasticity’, even when it is associated with delayed/
hastened growth or development. The resultant phe-
notype is the target of natural selection, regardless of
size or age, and an evolutionary response may follow,
provided that the phenotype with adaptive value
shows heritable variation (Endler, 1986). Even if the
plant’s functional response to environmental change
is mediated by a delay in vegetative growth, those
individuals showing greater responsiveness would
have better fitness than their counterparts and hence
would be selected. It was earlier discussed that the
phenotype resulting from a plastic response may
determine the outcome of competitive interactions
among plants, even if the trait state arose from onto-
genetic or allometric relationships instead of from
functional adjustments (Coleman, McConnaughay &
Ackerly, 1994).

Here, we are not disregarding the role of allometry
or ontogeny in determining the observed phenotypic
variation. We agree with earlier ideas regarding the
‘developmental reaction norm’ (i.e. the set of ontog-
enies that can be produced by a genotype when it is
exposed to different environments) as the ultimate
object of natural selection (Pigliucci et al., 1996). In
the same vein, we are not suggesting that allometry
and ontogeny should be dismissed as potential
explanatory factors when interpreting phenotypic
responses to the environment; it is a fact that size and
age often explain observed patterns of phenotypic
plasticity, at least partially (Schlichting & Pigliucci,
1998). Rather, we assert that, even in these cases, the
phenotypic outcome can be interpreted in adaptive
terms. Below, we illustrate this point with an example
that was provided by a reviewer of this manuscript.
The tadpoles of some frog species increase the depth
of their tailfin (i.e. the maximum body length perpen-
dicular to the tadpole’s tail) in response to the pres-
ence of insect predators (Dayton et al., 2005). There is
some evidence that deeper tails confer an advantage
in escape speed (Van Buskirk & McCollum, 2000).
Let us consider a case in which the predator-induced
phenotype shows a 2-cm absolute increase in tail
depth compared to control, predator-free tadpoles.
However, after correcting for body size, which is
greater in predator-exposed individuals (Van Buskirk
& McCollum, 2000), the relative increase is of 0.5 cm.
Consequently, these size-corrected tails are statisti-
cally similar to those of control tadpoles. Our point is
that, if experiments demonstrate that: (1) tadpoles
with deeper tails, in absolute terms, are faster and
(2) faster tadpoles survive better in the presence of
predators, then the plastic response of increased tail
depth is to be considered legitimate and adaptive.
Therefore, the actual fitness benefit overrides the fact
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that size-corrected tails did not show a significant
change, which is of importance for understanding the
internal mechanism of biomass and energy allocation
of tadpoles, although it does not deny the relevance of
the plastic response. Of course, caution should be
exercised before concluding that it is the change in
tail depth, and not an unmeasured correlated trait or
even body size, what explains the enhanced tadpole
performance in the presence of predators. The preci-
sion of experimental approaches and, as discussed
above, the connection of observed patterns with func-
tional arguments (e.g. size itself can hardly be con-
nected with escape speed) would shed light into this
question.

CONCLUDING REMARKS

Phenotypic plasticity is inherently an ecological phe-
nomenon and refers to changes in the phenotype
induced by the environment. Whether this must be
accompanied by a one-to-one identification of a phe-
notype with its underlying genotype or not should
depend upon the scale of the question. When the focus
is on the evolution of phenotypic plasticity within
a population, or on the mechanisms underlying the
plastic response, the use of the traditional approach
to the genotypic basis of the phenotype is recom-
mended for gaining precision and predictive power.
Knowledge of the particular processes and signals
involved in the expression of plastic responses and of
the genetic architecture of characters that promote or
constrain trait plasticity can be very valuable for
understanding the evolution of plasticity or the lack
thereof (Pigliucci & Byrd, 1998; DeWitt & Scheiner,
2004). When the study poses ecological questions,
such as those related to patterns of population
differentiation in plasticity along an environmental
gradient (Gianoli & González-Teuber, 2005; Bell &
Galloway, 2008), or those inquiring for the role of
plasticity in explaining contrasting niches in closely-
related species (González & Gianoli, 2004; Saldaña
et al., 2005), a broad approach to plasticity, as we
have shown here, can be very valuable. By placing
emphasis on the phenotype and focusing on the
representativeness of the genotypic sample, this
approach may contribute to the understanding of the
ecological significance of phenotypic plasticity. It also
allows the inclusion of a broader range of study
systems, thus providing a comprehensive view of the
relevance of phenotypic plasticity in nature. This
approach has been followed in many previous studies
and has been briefly discussed in the context of the
realism versus precision dichotomy, as compared
to the sensu stricto approach (Richards et al.,
(2006). However, a clear assertion of the associated
advantages was pending.

Despite the remarkable expansion of phenotypic
plasticity research along the evolutionary and
molecular fronts (Pigliucci, 2005; Ellers & Stuefer,
2010), we think that the field will still benefit from
more basic, ecological evidence eventually leading to
the elucidatation of general patterns of phenotypic
plasticity in nature, which currently appear to remain
elusive (Palacio-López & Gianoli, 2011). We hope that
the approach advocated herein will help to promote
ecological research on phenotypic plasticity, particu-
larly by young scholars.
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